Simulations of nonhelical hydromagnetic turbulence.
نویسندگان
چکیده
Nonhelical hydromagnetic forced turbulence is investigated using large scale simulations on up to 256 processors and 1024(3) mesh points. The magnetic Prandtl number is varied between 1/8 and 30, although in most cases it is unity. When the magnetic Reynolds number is based on the inverse forcing wave number, the critical value for dynamo action is shown to be around 35 for magnetic Prandtl number of unity. For small magnetic Prandtl numbers we find the critical magnetic Reynolds number to increase with decreasing magnetic Prandtl number. The Kazantsev k(3/2) spectrum for magnetic energy is confirmed for the kinematic regime, i.e., when nonlinear effects are still unimportant and when the magnetic Prandtl number is unity. In the nonlinear regime, the energy budget converges for large Reynolds numbers (around 1000) such that for our parameters about 70% is in kinetic energy and about 30% is in magnetic energy. The energy dissipation rates are converged to 30% viscous dissipation and 70% resistive dissipation. Second-order structure functions of the Elsasser variables give evidence for a k(-5/3) spectrum. Nevertheless, the three-dimensional spectrum is close to k(-3/2), but we argue that this is due to the bottleneck effect. The bottleneck effect is shown to be equally strong both for magnetic and nonmagnetic turbulence, but it is far weaker in one-dimensional spectra that are normally studied in laboratory turbulence. Structure function exponents for other orders are well described by the She-Leveque formula, but the velocity field is significantly less intermittent and the magnetic field is more intermittent than the Elsasser variables.
منابع مشابه
Hydromagnetic energy spectra from large eddy simulations
Direct and large eddy simulations of hydrodynamic and hydromagnetic turbulence have been performed in an attempt to isolate artifacts from real and possibly asymptotic features in the energy spectra. It is shown that in a hydrodynamic turbulence simulation with a Smagorinsky subgrid scale model using 512 meshpoints two important features of the 4096 simulation on the Earth simulator (Kaneda et ...
متن کاملIs Nonhelical Hydromagnetic Turbulence Peaked at Small Scales?
Nonhelical hydromagnetic turbulence without an imposed magnetic field is considered in the case where the magnetic Prandtl number is unity. The magnetic field is entirely due to dynamo action. The magnetic energy spectrum peaks at a wavenumber of about 5 times the minimum wavenumber in the domain, and not at the resistive scale, as has previously been argued. Throughout the inertial range, the ...
متن کاملSuppression of small scale dynamo action by an imposed magnetic field.
Nonhelical hydromagnetic turbulence with an externally imposed magnetic field is investigated using direct numerical simulations. It is shown that the imposed magnetic field lowers the spectral magnetic energy in the inertial range. This is explained by a suppression of the small scale dynamo. At large scales, however, the spectral magnetic energy increases with increasing imposed field strengt...
متن کاملDynamo-generated Turbulence and Outtows from Accretion Discs
Local hydromagnetic simulations of accretion disc turbulence provide now the most convincing evidence that the origin of turbulence in discs could be the Balbus{Hawley magneto-rotational instability. The main results of such calculations are highlighted with particular emphasis on the generation of large scale magnetic elds. Comparison with mean-eld dynamo theory is made. This theory is then us...
متن کاملHydrodynamic and hydromagnetic energy spectra from large eddy simulations
Direct and large eddy simulations of hydrodynamic and hydromagnetic turbulence have been performed in an attempt to isolate artifacts from real and possibly asymptotic features in the energy spectra. It is shown that in a hydrodynamic turbulence simulation with a Smagorinsky subgrid scale model using 5123 mesh points, two important features of the 40963 simulation on the Earth simulator Y. Kane...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Physical review. E, Statistical, nonlinear, and soft matter physics
دوره 70 1 Pt 2 شماره
صفحات -
تاریخ انتشار 2004